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The underlying cause of sarcopenia and dynapenia (age-related strength loss) are not fully elucidated, but may be the result, or
combination, of alterations in lifestyle or inflammatory and endocrine profiles. What is clear is that functional ability is limited and
mortality risk is elevated. Mechanistically, muscle atrophy is the result of the prolonged periods of net negative muscle protein balance,
brought about by the imbalance between muscle protein synthesis (MPS) and muscle protein breakdown (MPB). Contractile loading of
skeletal muscle, through resistive-type exercise and amino acid ingestion both act as a strong stimulus for MPS and, when combined,
can induce a net positive protein balance and muscle hypertrophy. Given that MPS in older muscles displays a blunted response to
anabolic stimuli compared with the young, the combined effect and manipulation of contractile and nutrient interventions to optimize
muscle anabolism could be extremely important for counteracting sarcopenia. Specifically, the dose, absorption kinetics, leucine
content, but less-so the timing of ingestion, are important determinants of the mRNA translational signalling response regulating MPS.
In addition, resistance exercise-induced rates of MPS and hypertrophy appear to be dependent on exercise volume (to achieve maximal
muscle fibre recruitment), as opposed to the absolute load that is lifted. A number of recent studies in young adults lend weight to this
notion by showing that contraction can be manipulated; allowing low load weight lifting to effectively stimulate rates of MPS to a level
comparable with traditional high loads, a finding with important implications for older adults interested in undertaking resistance
exercise.

Introduction

Age-related skeletal muscle atrophy, or sarcopenia (trans-
lated as poverty of the flesh), occurs predominantly in type
II muscle fibres and is accompanied by declining strength.
This ageing phenomenon contributes to impairments in
physical function, thereby lowering the quality of life in the
elderly. In addition to the predictive relationship between
sarcopenia and disability, sarcopenia can increase the
prevalence of age-associated complications including
rheumatoid and osteoarthritis, vascular disease, type II dia-
betes and osteoporosis that require extensive health care
resources. Given the well-described expansion of older
populations in society, concerns over the continued avail-
ability of health care resources to counteract age-related
disease are well founded. Therefore, investigations into
nutrient and exercise interactions to prevent muscle
wasting in the elderly are of great importance.

At the cellular level, muscle atrophy stems from pro-
longed periods of net negative protein balance, brought
about by dampened rates of muscle protein synthesis
(MPS), elevated rates of muscle protein breakdown (MPB),
or a combination of the two, the extent of which depends
on the specific wasting condition (i.e. sarcopenia vs.
cachexia). Currently, it is unclear whether sarcopenia is the
result of alterations in basal, fasted protein kinetics (i.e. a
reduction in MPS and elevated MPB) or a diminished
muscle protein synthetic response to normally robust ana-
bolic stimuli, such as food intake and muscle contractile
activity.Certainly, a growing number of studies point to the
latter of these mechanisms as a primary contributor to
sarcopenia and are discussed herein. Importantly, sarcope-
nia does not appear to be an inevitable consequence of
ageing. Muscle wasting in the elderly is dependent on the
quality of ageing. For example, relatively ‘well-preserved’
elderly muscles in older individuals who maintain a
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physically active lifestyle appear able to maintain the
ability to mount a strong anabolic response to contractile
loading and food intake that is comparable with the
young. Furthermore, basal, fasted rates of MPS and MPB
do not appear different between healthy old and young
muscles [1–5].On the other hand,muscle unloading/disuse
elevates systemic and local markers of inflammation and
oxidative stress, which may contribute toward blunting
basal, fasted protein kinetics and anabolic sensitivity in
older adults who do not maintain a physically active life-
style or, more likely, suffer from repeated bouts of pro-
tracted hospitalization. Empirical support for the notion
that maintaining a physically active lifestyle can delay sar-
copenia is apparent from a number of studies showing that
a short period of immobilization can hasten the decline in
muscle protein synthesis in the elderly [6–9].This model of
sarcopenia has been termed the‘acute catabolic crises’[10].
In summary, with advancing age, it becomes increasingly
likely that even a brief, clinically mandated period of bed
rest or reduced ambulation (Breen & Phillips, unpublished
observations) could initiate a serious decline in muscle
strength and functional capacity, that is, a ‘tipping point’
from which some older adults may not fully recover.

Recent evidence points to differences in muscle
protein metabolism between older men and women. Spe-
cifically, Smith and co-workers [11, 12] found that the basal
rate of MPS was greater in old women than in old men and
that in response to meal ingestion older men, but not older
women, were able to increase the rate of MPS in response
to meal ingestion. These data are somewhat paradoxical
when one considers that older women generally have less
lean mass and more body fat than older men and indica-
tions are that post-absorptive and post-prandial rates of
MPS are reduced in obese young adults [13]. Clearly, the
discrepant findings may be due to differences between
young and old muscles. In support of this notion, there
appears to be no difference in basal rates of MPS between
healthy young and middle-aged men and women [14]. For
the purpose of the current review and in the absence of
conclusive evidence, we will consider older men and
women a homogeneous population when discussing
nutrient and exercise strategies to counteract sarcopenia.

Mechanisms of action for MPS

In order for resistance exercise or nutrition to affect the
rate of MPS, an increase in the rate of mRNA translation
initiation, as the primary mechanism, is required (54). This
process involves the assembly of the components of the
translational machinery, specifically the mRNA that directs
protein assembly and the ribosome where assembly
occurs. The mammalian target of rapamycin (mTOR) con-
trols MPS and cell growth via a complex interaction with
downstream signalling targets, including eukaryotic initia-
tion factor 2 (eIF2), the 4E binding protein complex (4E-

BP1) and ribosomal protein S6 kinase (S6K1) [15, 16]. Given
that acute changes in MPS are thought to be predictive of
long term adaptations in muscle size/strength it is not sur-
prising that researchers have found that the protein syn-
thetic response to resistance exercise is abolished when
mTOR is blocked using the pharmacological agent,
rapamycin [16]. The activation of mTOR increases with
resistance exercise and occurs in a manner distinct from
growth factors like insulin growth factor (IGF)-1 [17, 18].For
example, the activation of mTOR following resistance exer-
cise is thought to occur independent of the protein kinase
B/Akt signalling pathway and is independent of the circu-
lating hormone concentration [19]. Like resistance exer-
cise, amino acids, in particular the branched-chain amino
acid (BCAA) leucine, increase mTOR signalling [20, 21]. The
extent of the intramuscular signalling response with
protein ingestion mirrors essential amino acid (EAA) avail-
ability in the blood and muscle [22], but in contrast, does
not have a strong relationship with the temporal time
course of feeding-induced MPS [22].

Nutrient-exercise interaction for
optimal muscle anabolism

Feeding protein results in a substantial hyperaminoacidae-
mia that promotes a net inward gradient for amino acid
transport to the intracellular free amino acid pool [22–24].
The resulting influx of amino acids (AA), particularly the
branched-chain amino acid (BCAA) leucine, into the free
amino pool provides the signal [25, 26] and building blocks
[22–24] (up to a point of saturation), for the stimulation of
MPS. Thus, periodic feeding induces shifts in net protein
balance (NPB) from negative during fasting where
MPS < MPB, to positive after feeding where MPS > MPB
[27]. Adequate nutrition therefore assists in the mainte-
nance of muscle protein mass [27, 28].The underlying basis
for the anabolic state induced by resistance exercise is also
a pronounced stimulation of MPS [29]. Combining the
resistance exercise-induced rise in MPS with feeding
results in an additive effect on MPS and marked increase in
NPB (MPS > > MPB) [23, 30–32]. Repeated bouts of resist-
ance exercise together with feeding therefore result in
periodic increases in accretion of proteins and, ultimately,
muscle hypertrophy [33]. Understanding the leucine
content of the food being consumed, the digestion pattern
of the protein, along with kinetic measures of protein
turnover and their interaction with exercise can allow for
practical recommendations to be made for older adults in
whom muscle mass is compromised.

Protein source
The amplitude and duration of the stimulation in MPS is
dependent on the ingested protein source. Seminal work
from the laboratory of Boirie [34–36] showed that there are
two types of protein contained in milk, characterized by
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the resulting patter of aminoacidaemia. Specifically, fast
proteins, the whey fraction in milk (~20%), are acid soluble,
resulting in rapid appearance in the circulation. In contrast,
slow proteins, the casein fraction in milk (~80%), are acid
insoluble and clot in the splanchnic region, resulting in a
slower absorption through the intestine and more pro-
longed aminoacidaemia. Thus, casein proteins better
support the synthesis of proteins in the splanchnic region,
whereas, whey proteins better support MPS. Acutely, we
have demonstrated that whey proteins promote greater
protein accretion than equivalent amounts of casein and
soy proteins after resistance exercise [37]. Furthermore,
when practiced over time, milk protein ingestion results in
greater gains in lean muscle mass than isonitrogenous and
isoenergetic soy ingestion [38]. Interestingly whey, casein
and soy proteins have a similar EAA content and are con-
sidered to be ‘high-quality’ protein sources (based on a
PDCAAS � 1.0). However, whey protein has greater leucine
content than casein and soy proteins.The rapid absorption
kinetics of whey induce a rapid leucinemia which may
‘trigger’ the intramuscular signalling processes required
for MPS [20, 39].This thesis may, in part, explain the greater
resting and post-exercise rates of MPS after whey protein
ingestion, compared with casein and soy [40–42]. Further-
more, alterations in the leucine threshold required for
anabolism may explain the apparent ‘anabolic resistance’
to AA ingestion in elderly muscle [43, 44]. In a series of
recent studies of older adults we have demonstrated that
whey protein ingestion elevates fed state MPS to a greater
extent than dose-matched soy and casein ingestion and
that this pattern of response remains apparent when
feeding is synergistically combined with resistance exer-
cise [43, 45, 46]. The efficacy of long term leucine supple-
mentation as a lone intervention to promote hypertrophy
is not supported. A recent, well-controlled study from Ver-
hoeven and colleagues, showed no hypertrophy in older
adults consuming an additional 7.5 g of leucine each day
[47].These data and more recent findings from our labora-
tory [48] suggest that supplemental leucine should be
given in addition to a full complement of EAAs (as sub-
strate to support MPS) in order to maximize muscle ana-
bolic potential. It could be theorized that co-ingesting
additional leucine with a protein dose insufficient to maxi-
mize MPS (i.e. 5–10 g during breakfast), may elevate the
acute muscle protein synthetic response. This thesis is yet
to be examined in detail, but a hypothetical example is
highlighted in Figure 1.

Protein dose–response
A dose–response for MPS with graded protein ingestion
has been demonstrated in three previous studies, only one
of which was conducted in older adults. Cuthbertson et al.
[49] were the first to show that oral ingestion of 10 g crys-
talline EAA, which equates to ~25 g of high quality protein
(i.e. milk, soy or chicken), resulted in maximal stimulation of
MPS in young and old adults at rest. Similarly, recent work

from our laboratory [43] showed that 20 g of whey protein
ingestion resulted in maximal stimulation of MPS in the
elderly. However, in contrast to the work of Cuthbertson
et al. [49] our findings indicated that a < 20 g of protein
ingestion was insufficient to mount a robust increase in
MPS compared with the fasted state (Figure 1). Thus, the
lack of sensitivity of older muscles to low-doses of AA is
consistent with the phenomenon of ‘anabolic resistance’
with advancing age. In the context of resistance exercise,
Moore et al. [30] showed that 20 g of egg protein ingestion
induced maximal stimulation of MPS in young men. Con-
suming an additional 20 g of egg protein (40 g total)
resulted in an 11% greater rate of MPS, but a concomitant
increase in leucine oxidation over that seen with the 20 g
protein dose.Thus, at intakes of protein of 20 g and higher,
a greater proportion of the ingested leucine was being
oxidized for fuel with minimal further stimulation of MPS
[30]. In contrast, our highlighted work [43] suggested that
older muscles were responsive to a greater dose of amino
acids than the young following resistance exercise, as MPS
was greater after 40 g of whey, compared with 20 g
(Figure 1).

With regard to the frequency of protein ingestion to
maintain elevated rates of MPS, data in young adults [22,
32] showed that MPS was transiently elevated with
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Figure 1
Comparison of the dose–response of muscle protein synthesis to graded
intact protein ingestion alone and in combination with resistance exer-
cise in old and young. For the purpose of this figure, intact protein is
defined as a high quality protein with rapid absorption kinetics and resist-
ance exercise is defined as high load low intensity lifting. Dashed columns
indicate the potential for anabolic interventions to be implemented to
potentiate acute MPS rates. For example, in the fed state, ingesting addi-
tional leucine may enhance the effect of an intact protein dose on MPS in
the elderly. In addition, nutrient interventions coupled with appropriate
contractile manipulation (i.e. low load high intensity exercise, slow
cadence or elevated volume lifting) may enhance feeding + exercise-
induced rates of MPS. These findings are based on data from references
[22, 30, 32, 43, 45, 46, 49, 75]. , old; , young
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feeding, peaking early and remaining elevated at 3 h post-
feeding. Resistance exercise appears to sensitize the myofi-
brillar, but not non-myofibrillar proteins, within the muscle,
thereby increasing the amplitude and duration of the syn-
thetic response.The finding of enhanced sensitivity of pre-
viously exercised muscle to subsequent amino acid
feeding has yet to be examined in the elderly. It appears
that further protein intake is required somewhere
between 3–5 h after the initial bolus (dependent on
whether muscle contraction is present) in order to main-
tain higher rates of MPS.

Thus, in line with recommendations from Paddon-
Jones [50], we advise that older adults should distribute
their daily protein equally across three or more daily meals.
For example, given our findings that the elderly require
more protein to increase MPS above rest than the young, in
a 75 kg individual consuming ~60 g of protein daily (based
on the RDA of 0.8 g·kg-1), this would mean consuming
~20 g of protein with each meal, as opposed to a typical
feeding regimen in which the elderly typically ingest
smaller amounts of protein with breakfast (~8 g) and lunch
(~12 g) and the majority of dietary protein with dinner
(~40 g) [51].

Timing of protein ingestion with resistance
exercise
Data in older populations concerning the optimal timing
of protein intake to maximize resistance exercise-induced
muscle protein anabolism are scarce [52–54]. In young
adults evidence to support pre-exercise feeding for opti-
mizing the anabolic response is equivocal at best [55–57].
Based on the heightened anabolic signalling response fol-
lowing resistance exercise the presence of a post-exercise
‘window of opportunity’, in which to provision of amino
acids will, theoretically, induce the greatest anabolic
response, has been touted [57, 58]. A single study [52]
showed that resistance training (over 12 weeks) followed
by immediate protein ingestion resulted in greater gains in
muscle cross-section and isokinetic strength, compared
with a delayed protein intake. However, many studies have
found that protein ingestion in close proximity to resist-
ance exercise has little additive effect on muscle anabolism
in the young and elderly [5, 54, 55, 59, 60]. Indeed, it has
recently been shown that dividing protein intake over the
morning prior to and evening after training, is more effec-
tive for lean mass accretion than consuming a single bolus
of protein immediately after exercise [61]. Furthermore,
provided adequate dietary protein is consumed, protein
supplements taken in close proximity to exercise do not
augment hypertrophy in the elderly [62]. At the muscle
protein synthetic level, recent evidence from our labora-
tory in healthy, young adults suggests that muscles remain
sensitive to protein ingestion at 24 h after low or high load
resistance exercise performed to failure [63], as evidenced
by an increase in MPS. Thus, protein feeding during late
exercise recovery still maintains the capacity to be syner-

gistic to exercise-mediated rates that have been shown to
exist in the fasted state during this time [64, 65]. Taken
together, these data give equivocal insight into the most
appropriate time for older adults to consume protein in
the context of resistance exercise to optimize muscle
anabolism. It appears that protein ingestion at doses of at
least 20 g at intervals over 24 h post-exercise may be able
to elicit a potent anabolic response in the elderly and
promote muscle protein accretion for hypertrophy.

Contractile regulation of muscle
anabolism

Manipulation of contractile factors including volume,
intensity and time under tension can alter the acute
muscle protein synthetic response to resistance exercise. It
was recently demonstrated that low load high intensity
lifting at 30% of their one repetition maximum (1RM) to
failure can elicit similar rates of myofibrillar MPS as tradi-
tional, high load low intensity lifting at 90% of 1RM in
trained young men [66]. Moreover, the MPS response at
24 h post-exercise was sustained only with the low load
high intensity lifting. Importantly, preliminary evidence
suggests low and high load lifting performed to failure
produces equivalent hypertrophy when practiced over
time [67]. Combined with the knowledge that three sets of
resistance exercise stimulate greater rates of MPS than one
set [68], these data suggest that post-resistance exercise
MPS is not entirely load dependent [69, 70], but appears to
be related to exercise volume (defined as repetitions x sets
x load) and, thus, achieving maximal muscle fibre activa-
tion (particularly of type II fibres) [71]. Further support for
this notion was recently demonstrated by Burd et al. [72]
who manipulated the time under tension of muscle con-
traction during resistance exercise by comparing 6 vs. 1 s
contractions. The authors showed that the slower contrac-
tion mode was accompanied by greater muscle activation
than normal contraction and stimulated greater rates of
myofibrillar and mitochondrial MPS. Collectively, these
findings may be of relevance to older adults striving to
increase lean mass through resistance exercise as they
typically display difficulty lifting high load weights due to
sarcopenic co-morbidities, such as rheumatoid and oste-
oarthritis as well as a blunted acute muscle protein syn-
thetic response to high load exercise intensities [73]. Thus,
in older muscles we suggest that a minimum contractile
threshold must be surpassed, either by increasing exercise
intensity and/or volume, in order to initiate an MPS
response. Support for this notion was demonstrated very
recently by Kumar et al. [74], who showed that low load
(40% 1RM) resistance exercise did not elevate MPS in the
elderly when three sets of 14 repetitions (i.e.non-fatiguing)
were completed. However, when the volume was doubled
to six sets of 14 repetitions, a robust increase in MPS was
noted.
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Conclusions and guidelines

In summary, older adults seeking non-pharmacological
interventions to assist in the maintenance or addition of
muscle mass would be best advised to implement a com-
bination of resistance-type exercise combined with a
source of amino acids/protein. Given the thesis that
maximal muscle fibre recruitment, achieved by completing
an exercise protocol of sufficiently high intensity or
volume, is the centrally important mechanism for achiev-
ing hypertrophy, older adults performing resistance exer-
cise may be best advised to perform low load lifting to near
failure or, alternatively, with a greater number of sets (for
example, six sets) or a slower lifting cadence (for example,
6 s) than a typical exercise regimen. First and foremost, this
approach will almost certainly reduce the number of
injuries/complaints and increase compliance in older
adults, although it remains to be seen as to which regimen
is most effective for maintaining or restoring muscle mass
and strength in older adults. In addition, low load resist-
ance exercise performed to achieve a high volume or
intensity may confer other benefits not typically found
when lifting heavier loads, such as improved aerobic
capacity, as evidenced in the acute phase by an increase in
the synthesis of mitochondrial proteins [72]. Focusing on
protein intake, to achieve sustained periods of NPB it
appears the elderly may be required to distribute dietary
protein equally with each meal throughout the day, as
opposed to ingesting the majority of their dietary protein
with dinner. To potentiate resistance exercise-induced
rates of MPS it is recommended that the elderly ingest a
high quality, rapidly digested, leucine-rich protein source
(for example, whey, chicken or soy) in close proximity to
resistance exercise. However, immediate post-exercise
protein intake may not be required to optimize the hyper-
trophic response to training in the elderly. Instead, consist-
ent protein ingestion over the day after training may be all
that is required to facilitate exercise-induced hypertrophy
in older adults.
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